Chapitre 2:

2.1

Définition 1:
On écrit $M_{m \times n}(\mathbb{R})$ pour l'ensemble des matrices de tailles $m \times n$ à coefficients réels. Aussi, pour deux matrices $A, B \in M_{m \times n}(\mathbb{R})$, on définit $A + B \in M_{m \times n}(\mathbb{R})$ comme étant la matrice satisfaisant

$$(A + B)_{ij} = A_{ij} + B_{ij},$$

ceci pour tout $1 \leq i \leq m$ et tout $1 \leq j \leq n$. De manière similaire, pour $A \in M_{m \times n}(\mathbb{R})$ et $\lambda \in \mathbb{R}$, on définit $\lambda A \in M_{m \times n}(\mathbb{R})$ par

$$(\lambda A)_{ij} = \lambda A_{ij},$$

ceci pour tout $1 \leq i \leq m$ et tout $1 \leq j \leq n$. Finalement, on définit la transposée d'une matrice $A \in M_{m \times n}(\mathbb{R})$, notée A^T comme suit:

$$(A^T)_{ij} = A_{ji},$$

ceci pour tout $1 \leq i \leq n$ et tout $1 \leq j \leq m$. Il est important de remarquer que $A^T \in M_{n \times m}(\mathbb{R})$ dans cette situation.

Lemme 2:
Soient $A, B, C \in M_{m \times n}(\mathbb{R})$ et $\lambda, \mu \in \mathbb{R}$. Soit également $0 \in M_{m \times n}(\mathbb{R})$ la matrice de taille $m \times n$ dont toutes les composantes sont nulles. (On appelle cette matrice la *matrice nulle*.) Alors les propriétés suivantes sont vérifiées.

1. $A + B = B + A$.
2. $A + (B + C) = (A + B) + C$.
3. $\lambda(A + B) = \lambda A + \lambda B$.
4. $(\lambda + \mu)A = \lambda A + \mu A$.
5. $(\lambda \mu)A = \lambda(\mu A)$.
6. $1 \cdot A = A$.
7. $(A + B)^T = A^T + B^T$.
8. $(A^T)^T = A$.
9. $(\lambda A)^T = \lambda A^T$.
10. $0 + A = A = A + 0$.
11. $(-1) \cdot A + A = 0$.
12. $0 \cdot A = 0$.
2.2

DÉFINITION 1 :

Soient $A \in M_{m \times p}(\mathbb{R})$ et $B \in M_{p \times n}(\mathbb{R})$. On définit le produit $A \cdot B \in M_{m \times n}(\mathbb{R})$ comme étant la matrice satisfaisant

$$(A \cdot B)_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj},$$

ceci pour tout $1 \leq i \leq m$ et tout $1 \leq j \leq n$.

LEMME 2 :

Soient $A, B \in M_{m \times p}(\mathbb{R})$, $C, D \in M_{p \times q}(\mathbb{R})$, $E \in M_{q \times n}(\mathbb{R})$, $\lambda \in \mathbb{R}$. Soit également $I_p \in M_{p \times p}(\mathbb{R})$ la matrice telle que $(I_p)_{ii} = 1$ et $(I_p)_{ij} = 0$ pour tous $1 \leq i, j \leq q$ tels que $i \neq j$. (On appelle cette matrice la matrice identité de taille $p \times p$.) Alors les propriétés suivantes sont vérifiées.

2. $(A + B)C = AC + BC$.
3. $A(C + D) = AC + AD$.
4. $\lambda(AC) = (\lambda A)C = A(\lambda C)$.
5. $0_{a \times m} \cdot A = 0_{a \times p}$, $A \cdot 0_{p \times r} = 0_{m \times r}$.
6. $(AC)^T = C^T A^T$.
7. $AI_p = A$ et $I_p C = C$.
2.3

DÉFINITION 1 :
On dit qu'une matrice A est carrée si elle est de taille $n \times n$ pour un certain entier $n \in \mathbb{N}$, c'est-à-dire si elle possède le même nombre de lignes et de colonnes. Aussi, une telle matrice est dite **inversible** s'il existe une matrice $B \in M_{n \times n}(\mathbb{R})$ telle que $AB = I_n = BA$.

PROPOSITION 2 :
Si $A \in M_{n \times n}(\mathbb{R})$ est une matrice inversible, alors il existe une unique matrice $B \in M_{n \times n}(\mathbb{R})$ telle que $AB = I_n = BA$. On notera en général $B = A^{-1}$.

DÉFINITION 2 :
Soit A une matrice de taille $m \times n$ à coefficients réels. La **diagonale principale** de A est la "ligne oblique" formée des composantes (i,i) de A.

DÉFINITION 3 :
On dit d'une matrice $A = (a_{ij}) \in M_{m \times n}(\mathbb{R})$ qu'elle est

- **triangulaire supérieure** si $a_{ij} = 0$ pour tout $i > j$,
- **triangulaire inférieure** si $a_{ij} = 0$ pour tout $i < j$,
- **diagonale** si elle est carrée (i.e. $m = n$) et $a_{ij} = 0$ pour tous $1 \leq i, j \leq n$ tels que $i \neq j$,
- **symétrique** si elle est carrée et $a_{ij} = a_{ji}$ pour tous i,j, i.e. $A = A^T$.

2.4

LEMME 1 :
Soient $A \in M_{n \times n}(\mathbb{R})$ une matrice inversible et $AX = b$ un système de n équations aux inconnues x_1, \ldots, x_n. Alors le système possède une unique solution, donnée par $X = A^{-1}b.$
2.5

Définition 1:
Une matrice élémentaire (de taille $n \times n$) est une matrice obtenue en effectuant une (et une seule) opération élémentaire, de type (I), (II) ou (III), sur les lignes de la matrice I_n. Concrètement, on adoptera les notations suivantes.

1. La matrice T_{ij} est la matrice obtenue en échangeant les lignes i et j de I_n.
2. La matrice $D_r(\lambda)$ est la matrice obtenue en multipliant la r-ème ligne de I_n par $\lambda \in \mathbb{R}$.
3. La matrice $L_{rs}(\lambda)$ est la matrice obtenue en ajoutant λ fois la ligne s à la ligne r de I_n.

Théorème 2:
Soient $A \in M_{m\times n}(\mathbb{R})$ une matrice arbitraire et $E \in M_{m\times m}(\mathbb{R})$ une matrice élémentaire de type (I), (II) ou (III). Alors EA est la matrice obtenue en effectuant sur les lignes de A l'opération de type (I), (II) ou (III), qui définit la matrice E.

Corollaire 3:
Les matrices élémentaires sont inversibles. On en effet

$$T_{ij}^{-1} = T_{ji}, \quad D_r(\lambda)^{-1} = D_r(\lambda^{-1}), \quad L_{rs}(\lambda)^{-1} = L_{rs}(-\lambda).$$

2.6

Premier critère d’inversibilité:
Une matrice $A \in M_{n\times n}(\mathbb{R})$ est inversible si et seulement si le système homogène $AX = 0$ possède une solution unique, à savoir, la solution triviale.

Algorithme pour trouver l'inverse d'une matrice donnée:
Soit $A \in M_{n\times n}(\mathbb{R})$ une matrice carrée. Afin de déterminer si A est inversible et de calculer son inverse (lorsque c'est possible), on procède comme suit :

1. Ecrire les matrices A et I_n l'une à côté de l'autre, formant ainsi une nouvelle matrice de taille $n \times 2n$.
2. Opérer sur les lignes de cette matrice ainsi obtenue afin de réduire le côté gauche à I_n.
3. Si l'on y arrive, alors A est inversible et son inverse est donnée par la matrice à droite.
2.7

COROLLAIRE DU PREMIER CRITÈRE D'INVERSIBILITÉ:

Soit \(A \in M_{n \times n}(\mathbb{R}) \), alors les deux affirmations suivantes sont vérifiées.

1. La matrice \(A \) est inversible si et seulement s'il existe \(B \in M_{n \times n}(\mathbb{R}) \) telle que \(BA = I_n \).
2. La matrice \(A \) est inversible si et seulement s'il existe \(B \in M_{n \times n}(\mathbb{R}) \) telle que \(AB = I_n \).

2.8

PROPOSITION 1:

Soit \(A \in M_{m \times n}(\mathbb{R}) \). Alors les affirmations suivantes sont vérifiées.

1. La matrice \(AT_{ij} \) est obtenue en échangeant les colonnes \(i \) et \(j \) de \(A \).
2. La matrice \(AD_r(\lambda) \) est obtenue en multipliant la \(r \)-ème colonne de \(A \) par \(\lambda \).
3. La matrice \(AL_{rs}(\lambda) \) est obtenue en ajoutant \(\lambda \) fois la \(r \)-ème colonne de \(A \) à la \(s \)-ème.

PROPOSITION 2:

Soit \(A \) une matrice de taille \(m \times n \) et supposons qu'il soit possible de réduire \(A \) à une forme échelonnée en n'utilisant que des opérations élémentaires de la forme \(D_r(\lambda) \), \(E_{rs}(\lambda) \) (avec \(\lambda > 0 \)) sur les lignes de \(A \).

Alors il existe une matrice triangulaire inférieure \(L \) et une matrice triangulaire supérieure \(U \) telles que \(A = LU \).

2.9

ALGORITHME POUR TROUVER \(L \) ET \(U \) DANS LA DÉCOMPOSITION \(LU \):

Soit \(A \in M_{m \times n}(\mathbb{R}) \) une matrice admettant une décomposition \(LU \). Afin de déterminer les matrices \(L \) et \(U \) dans une telle décomposition, on procède comme suit :

1. On applique successivement les opérations élémentaires de types (II) et (III) (avec matrices élémentaires correspondantes \(E_1, \ldots, E_k \)) aux lignes de la matrice \(A \) afin de la rendre échelonnée.
2. On pose \(U = E_k \cdots E_1 A \), c'est-à-dire \(U \) est la forme échelonnée de \(A \) obtenue à l'aide des opérations élémentaires ci-dessus.
3. La matrice \(L \) est alors obtenue en opérant sur les colonnes de \(I_n \) par \(E_1^{-1}, \ldots, E_k^{-1} \), dans cet ordre.
2.10

APPLICATION DE LA DÉCOMPOSITION LU AUX SYSTÈMES LINÉAIRES :

Soit un système $AX = b$ d'équations linéaires aux inconnues x_1, \ldots, x_n et supposons que $A = LU$, où L est triangulaire inférieure et U triangulaire supérieure. Alors on résout le système de la manière suivante :

1. Poser $Y = \begin{pmatrix} y_1 & y_2 & \cdots & y_n \end{pmatrix}^T$.
2. Résoudre le système $LY = b$.
3. Résoudre le système $UX = Y$.

2.11

DÉFINITION 1 :

Soit A une matrice de taille $m \times n$ à coefficients réels. Une *décomposition par blocs* de A est une manière de partitionner cette dernière matrice en plus petites matrices, que l'on obtient en traçant des lignes verticales et horizontales dans la matrice A.

LEMME 2 :

Soient $A, B \in M_{m \times n} (\mathbb{R})$ deux matrices décomposées en matrices par blocs de la même façon, alors on peut additionner A et B par blocs. Aussi, si C et D sont deux matrices admettant des décompositions en blocs

$$C = \begin{pmatrix}
C_{11} & \cdots & C_{1p} \\
C_{21} & \cdots & C_{2p} \\
\vdots & \ddots & \vdots \\
C_{m1} & \cdots & C_{mp}
\end{pmatrix}, \quad D = \begin{pmatrix}
D_{11} & \cdots & D_{1n} \\
D_{21} & \cdots & D_{2n} \\
\vdots & \ddots & \vdots \\
D_{p1} & \cdots & D_{pn}
\end{pmatrix}$$

telles que le nombre de colonnes de chaque bloc C_{ij} soit égal au nombre de lignes de chaque bloc D_{kj}, alors on peut multiplier par blocs.